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1. INTRODUCTION
Broadband (achromatic) polarization retarders of light have
been a subject of significant interest in optics for several dec-
ades [1–3]. Such retarders are assembled by combining two or
more ordinary wave plates, either of the same or different ma-
terial. One of the first documented proposals was by West and
Makas [4], who described achromatic combinations of plates
having different dispersions of birefringence. Achromatic re-
tarders composed of wave plates of the same material but dif-
ferent thicknesses were proposed by Destriau and Prouteau
[5] for two birefringent plates and Pancharatnam for three
plates, with which he constructed half-wave [6] and quarter-
wave [7] retarders. Later Harris and co-workers proposed
achromatic quarter-wave plates with six [8] and 10 identical
zero-order quarter-wave plates [9].

These early studies used either the Stokes vector or the
Jones vector description of light polarization. The equations
of motion of these vectors, which describe the polarization
change when light passes through an anisotropic optical med-
ium [1, 2–3], are identical to basic equations in quantum me-
chanics: the equation for the Jones vector in a medium with
zero polarization-dependent loss is identical to the Schrödinger
equation [10], while the Stokes vector obeys an equation of the
same form as the Bloch equation [11]. This analogywas used to
link the dynamics of light polarization to the dynamics of two-
state quantum systems, such as a spin-1∕2 particle in a mag-
netic field or a two-level atom in a laser field [12,13,14,15–16];
this analogy has paved the ground for the linear optics imple-
mentation of quantum computing [17].

The composite achromatic retarders discussed above
[4,5,6,7,8–9] are the precursor of the composite pulse se-
quences discovered later, apparently independently, in nucle-
ar magnetic resonance (NMR) [18,19–20]. Composite pulse
sequences are widely used in NMR to manipulate spins with
high fidelity and robustness to parameter variations; they have
a significant potential in quantum optics [21,22–23] and quan-
tum information processing [24,25], as well. Ardavan [26] has
recently recognized this analogy and proposed a broadband

composite linear retarder based on some well-known compo-
site pulses in NMR [18,19–20].

In this paper, we use the analogy between the polarization
Jones vector and the quantum state vector to propose arbi-
trarily accurate broadband polarization retarders, which pro-
mise to deliver very high polarization conversion fidelity in an
arbitrarily broad range of wavelengths. There are different
methods for generating arbitrary accurate composite pulses
[27,28–29], which outperform the other achromatic retarders
proposed earlier. However, to this end, we design novel
phase-stabilized broadband (BB) composite sequences, which
are more suitable for the purposes of composite retarders for
practical reasons: they require far fewer wave plates to build
up composite retarders of the same or comparable efficien-
cies. They offer very high retarding performance and, at
the same time, manage to keep the number of wave plates be-
low 10–15, thereby significantly reducing complexity and cost
of fabrication.

2. BACKGROUND
Any polarization system can be viewed as composition of a
retarder and a rotator [30]. A rotation at angle θ in the polar-
ization plane is described by the Jones matrix

R�θ� �
�
cos θ sin θ
− sin θ cos θ

�
: (1)

A retarder increases the phase of the electric field by φ∕2
along the fast axis and retards it by −φ∕2 along the slow axis,
which can be expressed in the horizontal–vertical (HV) basis
by the Jones matrix

J�φ� �
�
eiφ∕2 0
0 e−iφ∕2

�
; (2)

where φ � 2πL�nf − ns�∕λ, with λ being the vacuum wave-
length, nf and ns the refractive indices along the fast and slow
axes, respectively, and L the thickness of the plate. The most
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common type of retarders are the half-wave plates (φ � π)
and quarter-wave plates (φ � π∕2). Since the performance
of such retarders, i.e., the phase shift φ, depends strongly
on the thickness and the rotary power of the plate, the tradi-
tional wave plates are not BB, as only a narrow range of wave-
lengths around λ acquire the desired phase shift. To this end,
we use composite wave plates to create BB retarders.

Let us now consider a single polarizing birefringent plate of
phase shift φ and let us introduce a system of HV polarization
axes (HV basis), which are rotated by an angle θ with respect
to the slow and the fast axes of the plate. The Jones matrix J
has the form

Jθ�φ� � R�−θ�J�φ�R�θ�: (3)

In the left–right circular polarization (LR) basis, this matrix
obtains the form Jθ�φ� � W−1Jθ�φ�W, where W connects
the HV and LR polarization bases:

W � 1���
2

p
�
1 1
−i i

�
: (4)

Explicitly, the Jones matrix in the LR basis is

Jθ�φ� �
�

cos �φ∕2� i sin �φ∕2�e2iθ
i sin �φ∕2�e−2iθ cos �φ∕2�

�
: (5)

Half- and quarter-wave plates rotated by angle θ, �λ∕2�θ and
�λ∕4�θ, are respectively described by Jθ�π� and Jθ�π∕2�.

3. COMPOSITE POLARIZATION
RETARDERS
Our objective is to construct retarders that are robust to var-
iations in the phase shift φ at selected value(s) of this shift.
Such retarders tolerate imperfect rotary power φ∕L and plate
thickness L and also operate over a broad range of wave-
lengths λ. To this end, we replace the single retarder with a
sequence of N retarders, each with phase shift φk and rotated
by angle θk, described in the LR basis by the Jones matrix
(read from right to left):

J�N� � JθN �φN �JθN−1
�φN−1� � � � Jθ1 �φ1�: (6)

The efficiency of the composite retarder is measured by the
fidelity F � 1

2Tr�J−10 J�N�� [26], where J�N� is the achieved and
J0 is the target Jones matrix.

First, we show how to construct a BB half-wave retarder,
which inverts light polarization with high fidelity in a broad
range of phase shifts φ around π. Its Jones matrix in the
LR basis reads (up to a global phase factor):

J0�π� �
�
0 i
i 0

�
: (7)

We compose a sequence of an odd number N of λ∕2 plates
(φk � φ � π), each rotated by θk: �λ∕2�θN �λ∕2�θN−1

…�λ∕2�θ1
[read from right to left; see Fig. 1(a)]. The phase θ1 does
not change the performance of our retarders. Therefore, for
convenience, we set θ1 � 0 and we are left with N − 1 relative
rotation angles, which are treated as free parameters.

Next, we obtain the composite Jones matrix (6)

J�N� � JθN �π�JθN−1
�π� � � � Jθ1�π�; (8)

and set J�N� � J0�π� at φ � π, which leaves us with N − 2 in-
dependent angles θk to vary. We then nullify as many lowest
order derivatives of J�N�

12 versus the phase shift φ at φ � π as
possible. We thus obtain a system of nonlinear algebraic equa-
tions for the N − 2 rotation angles θk. For our composite
retarder composed of λ∕2 plates only, all odd-order deriva-
tives vanish at φ � π; hence, N − 2 rotation angles allow us
to nullify the first N − 2 complex derivatives:

�∂kφJ�N�
12 �φ�π � 0 �k � 1; 2;…; N − 2�; (9)

as well as the real or imaginary part of the next nonzero de-
rivative (of order N − 1):

Re�∂N−1
φ J�N�

12 �φ�π � 0 or Im�∂N−1
φ J�N�

12 �φ�π � 0. (10)

Solutions to Eqs. (9) and (10) provide BB half-wave retarders.
Longer retarders, of larger number N of constituent wave
plates, provide higher order of stability against variations of
the phase shift φ and the light wavelength λ. Examples of BB
half-wave retarders are listed in Table 1. Their fidelities and
phase retardances are illustrated, respectively, in Fig. 2(a)
and Fig. 3(a).

We can construct in the same manner various BB quarter-
wave retarders. Their Jones matrix in the LR basis is

J0��π∕2� � 1���
2

p
�

1 �i
�i 1

�
: (11)

z
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(a)

(b)
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Fig. 1. (Color online) Implementations of different BB composite re-
tarders composed of N half- and quarter-wave plates, each rotated by
angle θk �k � 1; 2;…; N�with respect to the fast axis. (a) BB half-wave
retarder composed of N half-wave plates; (b) BB quarter-wave retar-
der composed of N − 1 half-wave plates and a quarter-wave plate;
(c) BB half-wave retarder composed of N − 1 half-wave plates, a
quarter-wave plate, and a mirror; (d) BB quarter-wave retarder com-
posed of N − 2 half-wave plates, two quarter-wave plates, and a
mirror.
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We have found that the most suitable composite sequence
consists of N − 1 λ∕2 plates (φ � π) and a λ∕4 plate
(φ � π∕2): �λ∕2�θN �λ∕2�θN−1

� � � �λ∕2�θ2 �λ∕4�0 [read from right
to left; see Fig. 1(b)]. The corresponding Jones matrix is

J�N� � JθN �π�JθN−1
�π� � � � Jθ2�π�J0�π∕2�: (12)

There are N − 1 free phases θk, with which we can nullify the
first ⌊�N − 1�∕2⌋ complex derivatives

�∂kφJ�N�
12 �φ�π � 0 �k � 1; 2;…; ⌊�N − 1�∕2⌋�; (13)

where ⌊x⌋ denotes the integer part of x. For even N , we can
nullify also the real or imaginary part of the next nonzero de-
rivative (of order N∕2):

Re�∂N∕2
φ J�N�

12 �φ�π � 0 or Im�∂N∕2
φ J�N�

12 �φ�π � 0. (14)

Table 1 lists a set of phases that produce BB quarter-wave
retarders; fidelities and phase retardances are shown, respec-
tively, in Figs. 2(b) and 3(b).

4. COMPOSITE POLARIZATION
RETARDERS WITH A MIRROR
We show now how to construct BB quarter-wave and half-
wave retarders by placing a mirror at the end of the composite

sequence of plates. Thus the retarders are effectively twice as
long and we can reduce the number of wave plates while
maintaining the fidelity. We note that, if the incident light
“sees” a wave plate rotated at an angle θ, then the reflected
light will “see” the same wave plate rotated at the angle −θ.

For the BB half-wave retarder, the most efficient sequence
is composed of N − 1 half-wave plates (φ � π) and a

Table 1. Rotation Angles θk (in Degrees)

for BB Retarders with Different Number

N of Constituent Half-Wave Platesa

N Rotation Angles �θ1; θ2;…; θN−1; θN �
(a) Half-wave retarders

5 (0; 52.2; 336.7; 336.7; 52.2)
9 (0; 158; 59.9; 45.5; 151.6; 174.4; 108.4; 0.5; 58.9)
13 (0; 109.1; 175; 49; 91.6; 9.7; 172.8; 28.6;

127.3;131.2; 174.8; 76.1; 22.1)

(b) Quarter-wave retarders
4 (0; 69.3; 318.6; 69.3)
5 (0; 48.6; 325.8; 325.8; 48.6)
6 (0; 116.6; 69.1; 175; 69.1; 116.6)
8 (0; 104.8; 103.6; 32.5; 149.6; 52.6; 74.3; 137.6)
10 (0; 34.3; 97.1; 120.6; 142.7; 50.7; 8.9;

121.2; 64.9; 77)

(c) Half-wave retarders with a mirror
2 (30; 150)
3 (39; 10.3; 122.7)
4 (22; 73.4; 171.6; 150.2)
5 (9.4; 115.1; 154.7; 51; 3.8)
10 (110.3; 161.4; 18.8; 111.7; 96; 84.9; 136.2;

65.7; 5.9; 67.1)

(d) Quarter-wave retarders with a mirror
4 (45; 19.3; 113.6; 166)
5 (45; 131.1; 169.3; 39.7; 115.5)
6 (45; 130.3; 164.6; 25.1; 83; 162)
8 (45; 141.5; 104.9; 127.2; 43.2; 65.9; 6.2; 112)
9 (45; 152.7; 73.2; 30.1; 1.2; 144.4; 94.4; 29; 127.4)
10 (45; 126.6; 165.5; 145.1; 154.9; 64; 43; 25.3; 87.1; 156.5)
a(a) Half-wave BB composite retarders; see Fig. 1(a). (b) Quarter-wave BB

composite retarders; see Fig. 1(b). (c) Half-wave BB composite retarders with
a mirror; see Fig. 1(c). (d) Quarter-wave BB composite retarders with a mir-
ror; see Fig. 1(d).
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Fig. 2. (Color online) Fidelity F versus phase shift φ for BB half-
wave retarders [frame (a) with φ0 � π; see Fig. 1(a)] and BB
quarter-wave retarders [frame (b) with φ0 � π∕2; see Fig. 1(b)], for
different number of constituent platesN . The rotation angles are given
in Table 1. The fidelities of the single-plate retarder and the BB1 re-
tarder [26] are shown with labels “1” and “A,”while the fidelities of the
six- and 10-plate retarders of Harris and co-workers [8,9] are shown by
dashed lines with labels “H6” and “H10.” As one can clearly see, our
retarders outperform the others for N > 5.
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Fig. 3. (Color online) Retardance error versus phase shift φ for BB
half-wave retarders without a mirror [frame (a) with φ0 � π; see
Fig. 1(a)] and BB quarter-wave retarders without a mirror [frame
(b) with φ0 � π∕2; see Fig. 1(b)], for different number of constituent
plates N . The rotation angles are given in Table 1.
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quarter-wave plate (φ � π∕2): M�λ∕4�θN �λ∕2�θN−1
� � �

�λ∕2�θ2�λ∕2�θ1 [read from right to left; see Fig. 1(c)]. The total
Jones matrix is

J�2N� � J−θ1�π�J−θ2 �π� � � � J−θN−1
�π�J−θN �π∕2�σx

× JθN �π∕2�JθN−1
�π� � � � Jθ2�π�Jθ1�π�; (15)

where the Pauli matrix σx describes the mirror in the LR basis.

First we impose J�2N� � J0�π�. We are left with N − 1 rota-
tion angles θk, which we use to nullify the first N − 2 (com-
plex) derivatives

�∂kφJ�2N�
12 �φ�π � 0 �k � 1; 2;…; N − 2�; (16)

and the real or the imaginary part of the next nonzero deriva-
tive (of order N − 1):

Re�∂N−1
φ J�2N�

12 �φ�π � 0 or Im�∂N−1
φ J�2N�

12 �φ�π � 0. (17)

Exemplary solutions are listed in Table 1; fidelities and phase
retardances, respectively, are shown in Figs. 4(a) and 5(a).

For the BB quarter-wave retarder, the most suitable se-
quence is composed of N − 2 half-wave plates (φ � π) sur-
rounded by two quarter-wave plates (φ � π∕2) as follows:
M�λ∕4�θN �λ∕2�θN−1

� � � �λ∕2�θ2 �λ∕4�θ1 [read from right to left;
see Fig. 1(d)]. The total Jones matrix is

J�2N� � J−θ1�π∕2�J−θ2 �π� � � � J−θN−1
�π�J−θN �π∕2�σx

× JθN �π∕2�JθN−1
�π� � � � Jθ2�π�Jθ1�π∕2�: (18)

We impose J�2N� � J0�π∕2�, at the expense of two rotating
angles θk, and set the first N − 2 (complex) derivatives to zero:

�∂kφJ�2N�
12 �φ�π � 0 �k � 1; 2;…; N − 2�: �19�

Exemplary solutions are listed in Table 1; fidelities and phase
retardances are shown, respectively, in Figs. 4(b) and 5(b).

5. CONCLUSION
The presented composite retarders are advantageous, as they
allow us to manipulate polarization only by varying the rota-
tion angle of the single wave plates. Therefore, they offer ro-
bustness against variations of the parameters of both the
crystal and the light field. These include the crystal tempera-
ture, the wavelength of the electric field, the crystal length,
and the angle of incidence. In addition, the proposed retarders
significantly outperform the existing BB retarders [8,26] for
more than five individual plates. An experimental implemen-
tation with standard retarders available in most laboratories
should be straightforward.
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